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Worm Epidemics 
in High-Speed 
Networks

S ince the Melissa macro virus struck
Microsoft Windows users in late March
1999, viruses and worms have become a
common and persistent problem for all
computer users. For various practical rea-

sons, many machines remain unprotected by up-
to-date software patches or antivirus software, and
the emergence of the Internet has made it easy to
shut down a sizable number of vulnerable systems
either directly through a denial-of-service attack,
or indirectly through network congestion.

In its eighth annual survey of computer crime in
the United States, the Computer Security Institute
(www.gocsi.com), in collaboration with the San
Francisco Federal Bureau of Investigation’s
Computer Intrusion Squad, reported that malicious
software impacted 82 percent of surveyed organi-
zations, causing an average loss of $200,000.
Computer Economics (www.computereconom-
ics.com), an IT research firm, estimates the annual
global impact of viruses and worms to be in the bil-
lions of dollars.

In particular, worms have become more preva-
lent as Internet connectivity, including always-on
broadband access, has become ubiquitous. Unlike
viruses, which attach parasitically to a normal pro-
gram, worms are stand-alone automated programs
designed to seek out and infect vulnerable comput-
ers with a copy of themselves. They are thus intrin-
sically dependent on a network and, as the “Famous
Computer Worms” sidebar describes, have caused
problems since the early days of the Arpanet, the
forerunner of the Internet. 

Ironically, emerging high-speed networks will
likely accelerate the spread of worms, especially
those like Code Red and SQL Slammer that are
mostly limited by available bandwidth. As network
rates increase, the time available to respond to
worm epidemics may shorten to seconds before the
entire vulnerable population is saturated. Ad hoc
manual defenses will be much too slow; only an
automated defense system might be capable of
detecting and isolating a new worm so quickly.
Unfortunately, although this idea has been around
for years, many long-standing technical problems
require better solutions.

HOW A COMPUTER WORM SPREADS
A computer worm that randomly scans new hosts

to infect can be expected to follow the simple epi-
demic model known from biological epidemiology.1

This model assumes that a population of constant
N hosts are initially all vulnerable but uninfected
except for a small number that are infected and con-
tagious. These susceptibles and infectives, respec-
tively, mix randomly, with an infection parameter
β characterizing the rate of infection between sus-
ceptible-infective pairs.

Once infected, a host remains permanently
infected; the model does not allow for recovery or
deaths during the epidemic’s timescale. More realis-
tically, certain hosts might be invulnerable to infec-
tion, but those cases are simply discounted from the
population of interest. Expressed mathematically, if
It is the number of infectives in the population at time
t, then the simple epidemic follows the logistic curve

Future worm epidemics might spread at unprecedented rates in high-speed
networks. A comprehensive automated defense system will be the only
way to contain new threats but could be too risky to implement without
more reliable detection accuracy and better real-time traffic analysis.
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which has the familiar S-shape shown in 
Figure 1.

Under these assumptions, the entire susceptible
population eventually becomes infected at a rate
dependent on β—the larger the infection parame-

It = I0N

I0 + (N – I0)e–βNt

ter, the faster the infection. As Figure 1 shows, a
simple epidemic goes through two distinct phases.
In the early phase, the number of infectives is a
small fraction of the population, and the growth is
approximately exponential according to It = I0eβNt.
As infectives saturate the population, the rate of
spreading slows down in the later phase because
randomly scanned targets are more likely to be
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Distributed processing pioneers at the Xerox Palo Alto
Research Center—site of the first Ethernet connection—coined
the term worm in 1979 from the autonomous, data-deleting
programs called “tapeworms” in John Brunner’s science fiction
novel, The Shockwave Rider (Del Ray, 1975). Since then, a num-
ber of worms have caused havoc on the Internet.

The Morris worm was the first to spread “in the wild.” Robert
T. Morris Jr., a Cornell University graduate student, launched
what was intended to be a benign experiment via remote login
from the MIT Artificial Intelligence Laboratory on 2 November
1988. A bug in the program caused it to replicate much faster
than anticipated, and by the next day it had crashed 10 percent
of the fledgling Internet. Morris’s creation infected around 6,000
Unix machines nationwide, causing up to $100 million in dam-
age, and led directly to the creation of the Computer Emergency
Response Team Coordination Center (www.cert.org).

The Melissa worm first appeared on 26 March 1999 and tar-
geted Microsoft Word and Outlook users. The creator, David L.
Smith, named the worm after an exotic dancer and distributed it
in a Usenet discussion group as a Word file listing passwords to
pornographic Web sites. When a user downloaded and opened the
infected file, it sent itself to the first 50 names in the user’s Outlook
address book. Although Melissa was intended as a joke—the pay-
load consisted of quotations from the animated TV show The
Simpsons—it infected around 100,000 computers in the first
weekend, congesting e-mail servers around the world.

On 4 May 2000, Onel de Guzman, a college dropout in the
Philippines, unleashed the virulent Lovebug worm. Sent as an 
e-mail Visual Basic script attachment titled “ILOVEYOU,” it
spawned copies of itself to everyone in the victim’s Outlook
address book. The worm infected tens of millions of computers
worldwide, shutting down e-mail servers and causing billions
of dollars in damage to businesses. 

In July 2001, two major worm epidemics attracted media
attention. The Code Red worm exploited a security hole in
Microsoft’s Internet Information Server software. The first ver-
sion spread slowly, but a more virulent offshoot infected more
than 350,000 systems running IIS in less than a day. After a
period of hibernation, the malicious worm caused the compro-
mised servers to flood the White House Web site with garbage
data and defaced Web pages with the message “Hacked by
Chinese!” Only a flaw in the program prevented Code Red from
realizing its destructive potential.

The prolific Sircam worm, which appeared in the same
month, spread primarily as an e-mail attachment with a ran-
domly chosen subject line. When a user opened the infected
attachment, it randomly selected a file from the user’s My

Documents folder, infected it, and sent it to e-mail addresses in
the computer’s Outlook address book or Internet cache. The
worm was programmed to delete all data files on infected hard
drives on a certain day three months later, but an error in the
code prevented the attack from occurring. 

On 24 January 2003, the SQL Slammer worm began writhing
its way through the Internet. Although the worm, which exploited
vulnerabilities in Microsoft SQL Server, did not disturb any Web
pages or harm any files on infected machines, it spread at an
alarming rate, snarling global Internet traffic and disrupting cor-
porate networks, before it fizzled out.

Two major worm epidemics appeared within a week in 2003.
Discovered August 11, the Blaster worm infected half a million
computers during the summer by exploiting a distributed com-
ponent object model remote procedure call vulnerability on
Windows XP and Windows 2000 PCs. A teenager created the
most famous variant, dubbed Lovesan, which unsuccessfully
launched a denial-of-service (DoS) attack against the Microsoft
Windows Update Web server and caused operating systems on
some users’ machines to reboot or become unresponsive.

On 18 August, the Sobig.f worm surfaced, spreading rapidly
among thousands of Windows PCs by e-mail. Like its earlier
incarnations, which appeared serially beginning in January, it
exploited open proxy servers to turn infected machines into
spam engines. At its peak, Sobig.f reportedly accounted for one
in every 17 messages and produced more than 1 million copies
of itself within the first 24 hours. The Sobig worm variants
“spoofed” valid e-mail messages, primarily the Microsoft home
address, to disguise their malicious purposes. 

Mydoom, a mass-mailing e-mail worm that emerged on 26
January 2004, followed the growing trend of worms installing
a backdoor in infected computers, thereby enabling hackers to
gain remote access to data such as passwords and credit card
numbers. Designed to launch a timed DoS attack against
Microsoft and the SCO Group, Mydoom replicated up to 1,000
times a minute and reportedly flooded the Internet with 100
million infected messages in its first 36 hours.

On 30 April 2004, a new worm began circulating on the
Internet that exploited a Local Security Authority Subsystem
Service vulnerability in Microsoft Windows 2000, Windows
Server 2003, and Windows XP systems. Timed to strike over
the weekend after security personnel had gone home, Sasser
infected more than a million PCs worldwide within a few days,
causing them to repeatedly shut down and reboot. The worm
spread automatically by scanning random IP addresses for vul-
nerable systems, especially residential computers with always-
on broadband connections. 

Famous Computer Worms
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infected already, and few susceptibles remain to
come into contact with infectives. 

Figure 2 illustrates these two phases for a ran-
dom-scanning worm. In the early phase, an infected
host scans a number of likely susceptibles, which
in turn scan other hosts, leading to exponential
growth. The random scanning is relatively efficient
in the early phase because a high percentage of tar-
gets are likely to be susceptibles. Also, if the popu-
lation is large, scans are not likely to overlap
much—that is, a host will not receive multiple hits.

The volume of scanning traffic increases with the
number of infected hosts, resulting in network con-
gestion similar to a denial-of-service (DoS) attack.
Side effects of the worm traffic, such as Internet
Control Message Protocol “destination/port
unreachable” messages returned for unsuccessful
scans, can aggravate this problem. Network con-
gestion is manifested by long packet delays and
high packet loss, which serve to dampen a worm

outbreak because infected hosts cannot easily reach
other hosts. Active defensive measures such as
packet filtering by routers will also help curtail the
epidemic.

The population size N can be viewed as the entire
232 IP address space in the worst case. For a given
N and time t, the critical factor in the spreading rate
is β(1 – It/N), which represents the average number
of secondary infections by each worm per unit of
time. 

EXAMPLES OF FAST WORMS 
Examining two worms, Code Red and SQL

Slammer, illustrates how random-scanning worms
spread so quickly on the Internet.

Code Red
The Code Red worm achieved its rapid infection

rate through parallelism. At least three versions of
the worm attempted to exploit a buffer overflow
in Microsoft’s Internet Information Server software,
which the company revealed on 18 June 2001. The
flaw resided in a component used to support index-
ing and thus speed up searches. The Indexing
Service ISAPI filter in IIS did not check the length
of data in incoming HTTP GET request messages,
enabling a carefully crafted packet to cause a buffer
overflow. By exploiting this hole, a hacker could
execute arbitrary code and gain full system-level
access to the target server. 

The first version of Code Red appeared about a
month later on 12 July 2001.2 CRv1 scanned the
Internet for vulnerable servers, using Transmission
Control Protocol port 80 as its attack vector. To
compensate for the inherent latency in setting up a
TCP connection with potential targets, the worm
employed multiple threads. Upon infecting a
machine, CRv1 set itself up in memory and gener-
ated up to 100 new threads, each an exact replica
of the original worm. Thus, the propagation rate
depended on an infected machine’s multitasking
capability and how many threads it could block. 

CRv1 spread slowly because a programming
error caused it to generate identical, rather than
random, lists of IP addresses on each infected host.
On 19 July, a second version of Code Red appeared
with the error apparently fixed. CRv2 spread much
faster, infecting more than 359,000 machines
within 14 hours. At its peak, the worm infected
2,000 hosts every minute.

On 4 August, a new worm self-named Code Red
II began exploiting the same security hole in IIS
Web servers.3 After infecting a host, it lay dormant
for one to two days and then rebooted the machine.
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Figure 1. Simple 
epidemic logistic
curve. Growth is
exponential in the
early phase, slowing
down in the later
phase as infectives
saturate the 
population.
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Figure 2. Random-
scanning worm 
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phase, the epidemic
slows down due to
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and network 
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After rebooting, the worm activated 300 threads
to probe other machines. About one out of eight IP
addresses that CRII generated were completely ran-
dom, half were within the same class A range of the
infected host’s address, and three out of eight
addresses were within the same class B range of the
infected host’s address. The enormous number of
parallel threads thereby created a flood of scans,
compromising about 400,000 systems and causing
considerable network congestion.

SQL Slammer 
Like Code Red, the SQL Slammer worm that

raced through the Internet in late January 2003
exploited a buffer overflow vulnerability—in this
case in Microsoft SQL Server 2000 and its free
redistributable version, MSDE 2000—announced
by the company six months earlier.4 This worm,
also known as Sapphire and Helkern, achieved a
record-breaking infection rate through its surpris-
ing simplicity. Much smaller than the 4-Kbyte Code
Red and other previous worms, it fit in the 376-
byte payload of one User Datagram Protocol
packet. A single UDP packet directed to port 1434,
the default port for the database software’s resolu-
tion service, was sufficient to cause a buffer over-
flow in the service and install a copy of the worm.

The absence of a payload suggests that SQL
Slammer’s sole purpose was propagation. The
spreading rate was reportedly fast enough to infect
90 percent of vulnerable hosts, around 75,000
servers, within 10 minutes.5 In the first minute, the
infection doubled every 8.5 seconds, and it hit a
peak scanning rate of 55 million scans per second
after only three minutes. In contrast, the Code Red
infection doubled in 37 minutes but infected more
machines.

SQL Slammer spread rapidly by causing infected
computers to generate UDP packets carrying the
worm at the maximum rate of the machine or net-
work link—up to 26,000 probes per second, with
an average rate per machine of 4,000 probes per
second.5 This approach thus avoided the delays and
overhead in the form of control messages associ-
ated with setting up a TCP connection.

WORMS AND HIGH-SPEED NETWORKS
A worm similar to Code Red or SQL Slammer

could likely achieve a far higher infection rate and
saturate the target population much more quickly
in a high-speed network. Such networks can
increase β(1 – It/N) by making it easier for infected
hosts to communicate with potential targets. The
simple epidemic formula can be rearranged as

,

where TP represents the time it takes to infect
a fraction P of the population—that is, to
infect PN hosts. This result implies that if a
worm finds the bandwidth to double its probe
rate, effectively doubling the infection para-
meter β, it could saturate the target popula-
tion in half the time.

Worms able to avoid the inefficient scan-
ning and network congestion that slow down
simple epidemics in the later phase could
spread even faster than random-scanning worms
such as Code Red and SQL Slammer, reducing the
available response time to a matter of seconds in
high-speed networks.6 Such worms could, for
example, compile a list of potential hosts during a
preliminary reconnaissance phase to avoid waste-
ful probes of invulnerable targets. They could also
minimize duplication of effort by coordinating the
probing activities of all replicas through a Web site
or Internet relay chat channel. 

AUTOMATIC WORM DETECTION
Researchers have long recognized the need for

automatic detection and containment of new
worms.7 Traditional defenses against malware con-
sist of an ad hoc combination of antivirus software,
operating system patches, and network security
equipment such as firewalls. However, many users
are unwilling to expend the effort and endure the
inconvenience of frequently updating software and
applying patches. In addition, while firewalls,
routers, intrusion detection systems, and other net-
work security equipment are useful for limited pro-
tection of enterprise networks, they are not
currently designed to work cooperatively in a dis-
tributed, automated defense system.

Intrusion detection systems
The idea of an automated intrusion detection sys-

tem (IDS) can be traced as far back as 1980, when
James Anderson proposed using statistical analysis
to recognize unusual behavior in computer sys-
tems.8 The US Navy sponsored an early prototype
called the Intrusion Detection Expert System in the
mid-1980s,9 and commercial IDS products began
appearing in the 1990s.

An IDS performs three basic functions: It collects
raw data from sensors that monitor and record
activities in the hosts or network, analyzes that data
to classify activities as normal or suspicious, and
triggers a response to any suspicious activity it con-

TP =
ln P(N – I0) – ln (1– P)I0

βN
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siders sufficiently serious. A response usually
is simply an alarm that the IDS sends to the
network administrator for further action or
diagnosis.

In 1991, IBM proposed a digital immune
system that combined intrusion detection
with a more active response.10 The approach,
which Symantec has incorporated into its
commercial antivirus products, was inspired
by the human immune system’s response to a
viral infection.11 A digital immune system is
designed to automatically detect new worms
and viruses, report them to a central analysis

center, automatically create new signatures, and
coordinate dissemination of updated signatures. All
parts of the system must work properly for it to be
effective, which in practice is difficult to guarantee. 

Detection accuracy
The central problem in any IDS is accurately ana-

lyzing and classifying monitored activities. In the
digital immune system, the problem is discrimi-
nating “self” from “nonself.” In biological terms,
self refers to any cells belonging to the host body,
while nonself is foreign objects such as pathogens
or parasites.12 An ideal intrusion detection system
avoids both false positives (unnecessary alarms)
and false negatives (missed intrusions), but current
technology is not close to attaining perfect accu-
racy or reliability.

The two basic IDS approaches to data analysis
are misuse detection and anomaly detection. In
practice, most systems are based on misuse detec-
tion and augmented with anomaly detection. 

Misuse detection. Commonly used in commercial
IDS offerings, misuse detection defines a set of
attack signatures and looks for matching behavior.
This approach inherently depends on signature
accuracy: If the signatures are too narrowly defined,
some attacks might not be detected, resulting in false
negatives; if signatures are too broadly defined,
some benign behavior might cause false positives.
Another critical limitation of signature-based intru-
sion detection is the inability to detect new worms
that do not match a known signature and might
attack an unknown or unannounced vulnerability. 

Anomaly detection. In contrast, anomaly detection
defines a statistical pattern for “normal” behavior
and interprets any deviations from that pattern as
suspicious. Although this approach can detect new
attacks without a known signature, accurately
defining normal behavior is problematic. In addi-
tion, only a small fraction of suspicious cases may
truly be malicious—if every suspicious case raised

an alarm, behavior-based intrusion detection could
result in a high rate of false positives.

Another problem with anomaly detection is the
difficulty of identifying “wormlike” behavior.
Worms can exhibit certain signs—a dramatic
increase in network traffic volume, a steady increase
in scans and probes, a sudden change in the traffic
behavior of hosts—but these do not necessarily indi-
cate a worm attack. For example, port scans are a
normal part of the Internet’s background traffic and
can also contribute to sudden congestion.

Real-time detection 
Performing worm detection in real time is criti-

cal given the short window of time available for
containing a fast worm epidemic. Modern firewalls
and routers have this built-in capability, but actual
worm traffic might constitute a minute fraction of
the vast amounts of data that high-speed networks
carry. In short, detecting rare events could require
enormous processing power. 

A fast worm epidemic also requires a close tie
between real-time detection and an active response
system, such as automatic reconfiguration of routers
or firewalls, to block worm traffic. Typically, net-
work administrators must sift through voluminous
logs of data to identify real intrusions. This process
would be much too slow and time-consuming for
worm epidemics. 

T he rate at which a worm epidemic spreads
determines how many computing systems it
can potentially infect and thus, ultimately, the

disruption and cleanup costs. Only a comprehen-
sive automated defense system will be able to
quickly contain future worm outbreaks in high-
speed networks. However, an automated response
to a false alarm could trigger the wrong course of
action. Moreover, whether the alarm is false or cor-
rect, the response must not unduly obstruct legiti-
mate traffic. 

Although researchers continue to work on im-
proving worm detection accuracy and real-time
traffic analysis, a practical solution thus far remains
elusive. One possible alternative is to try to prevent
a worm from spreading rather than react to an
existing epidemic. Because infected hosts typically
scan different IP addresses at very high rates, a log-
ical preventive step would be to limit the rate of
such scanning. This approach, combined with
ingress filtering to prevent source-address “spoof-
ing,” could sharply reduce malicious traffic in high-
speed networks.

The central 
problem in any IDS 

is accurately 
analyzing and 

classifying
monitored 
activities.
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